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ABSTRACT

Arrival-time estimation by adaptive thresholding is described.
The probability density of arrival time is derived for differentiable
Markov processes. The special case of additive, stationary noise is
given particular attention. A direct derivation of the probability
density of arrival time for pulses with sharply rising edges is given for
arbitrary noise. The results are applied to the Gaussian and Rice
distributions. Comparison with the Cramer-Rao bound of estimation
theory indicates the asymptotic optimality of adaptive thresholding
for these two distributions.
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ARRIVAL-TIME ESTIMATION BY ADAPTIVE THRESHOLDING

INTRODUCTION

One method of determining the arrival time of a signal is to measure the time at which
the signal crosses a certain threshold level. Figure 1 shows a pulse with arrival time defined
to be the time at which the pulse exceeds level A. Suppose a series of pulses are received.
In a practical system the amplitude E will usually vary from pulse to pulse. If the rise
time does not change, the arrival time relative to the leading edge will vary from pulse to
pulse, even if no noise is present. To remedy the situation, adaptive thresholding can be
used. Adaptive thresholding is defined to be arrival-time estimation by thresholding in
which the level A is always a fixed fraction of E. Typically, A/E is set equal to 1/2.

E ________---

A -_ __ -

tc TIME

Fig. 1-Received pulse with a threshold crossing

A practical adaptive-thresholding system is shown in Fig. 2. The received signal is
split into two branches. In the lower branch the signal is first delayed by an amount ex-
ceeding its rise time, which is assumed to be known. Then the delayed signal passes
through an amplifier with a gain of G. The latter is a negative quantity such that IGI-1 is
equal to the desired value of A/E. The amplifier output is added to the original received
signal. The adder output crosses the zero level at a time equal to the time at which the
level A is crossed plus the constant delay. In the important special case of a half-ampli-
tude arrival time, A/E = 1/2 and G = -2. A detailed analysis of this adaptive thresholder
and an alternative one can be found in the literature (1).

Arrival-time estimation by adaptive thresholding is not the optimum estimation pro-
cedure (2-6). However, it will be shown that adaptive thresholding provides an asymp-
totically efficient estimate at least in some important cases. Furthermore, the simplicity
of implementing adaptive-thresholding systems gives the method practical importance.

1



DON J. TORRIERI

S )

Fig. 2-Adaptive thresholder

An approximate treatment of adaptive thresholding in the presence of Gaussian noise
has previously been done (1). In this report the general case of differentiable Markov
processes is studied.

GENERAL FORMULATION

Figure 3 shows an exaggerated example of a multiple threshold crossing, which may
occur when noise corrupts the received signal. The combined signal and noise is denoted
by r(t). When multiple crossings occur close together, there is some ambiguity as to which
crossing represents the actual pulse position, i.e., which crossing is closest to that crossing
which exists in the absence of noise. A somewhat arbitrary but simple strategy is for the
adaptive thresholder to detect only the first level crossing for each pulse it receives. Thus
we seek to derive the probability density of the first threshold crossing time of a received
signal.

With respect a received pulse, we assume that the adaptive-thresholding system is
capable of rejecting any level crossing which occurs too prematurely, that is, before a cer-
tain starting time. Under this assumption, we may, without loss of generality, focus atten-
tion on a single received pulse. We seek to determine the time of the first threshold cross-
ing to occur after a starting time defined to be t= 0. A practical system to accomplish
this rejection is shown in Fig. 4. The combined signal and noise, r(t), is applied to a fixed

A

TIME

Fig. 3-Exaggerated example of a multiple threshold crossing
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Fig. 4-System for the elimination of false alarms

thresholder, the level of which is set to a fixed fraction of the minimum expected amplitude
of the received pulses. The output of the fixed thresholder initiates a counter. This counter
continues to count as long as the fixed threshold level is exceeded by r(t). If the count
reaches a certain value, the gate is enabled, and r(t) is allowed to pass to the adaptive
thresholder. A reasonable critical value of the count is one-half of the minimum signal
duration. If the minimum signal duration is large enough such that there is negligible
probability of a noise pulse exceeding this duration, the system of Fig. 4 will reject spurious
pulses occurring outside the immediate vicinity of the signal edge. A reset pulse prepares
the counter for the next received signal. In keeping with our strategy to detect the first
level crossing, the delay in the upper branch should exceed somewhat the critical value of
the count.

With t a random variable equal to the first threshold crossing time of a received pulse,
fc(t) is defined to be its probability density function. To derive an expression for the
probability density, we relate it to another function more readily obtained. Referring to
Fig. 5, let (t)e represent the probability that a first threshold crossing of r(t) occurs in
the interval between t and t + e, assuming no crossing has occurred before time t. From
the above definitions, it follows (7) that

NO f, t(0) (1)

fc (x) dx

Since f(t) is a probability density function and we have assumed f(t) = 0 for t < 0,
it is required that

f fc(x)dX = 1. (2)

Using Eqs. (2) as a boundry condition, Eqs. (1) may be inverted to yield

- t
fc(t) = (t) exp Jo :(x) dx (3)

3
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A -- /

t tfE
TIME

Fig. 5-Small time interval of a received pulse

Once an expression for 13(t) is derived, Eqs. (3) will provide all the information needed for
our evaluation of the performance of adaptive thresholding.

If the time interval between t and t + e is chosen small enough and r(t) is assumed
to be differentiable, we can write

r(t + e) = r(t) + r'(t)e, (4)

where r'(t) is the time derivative of r(t). This equation implies that we may ignore the
possibility of more than one threshold crossing in the small time interval. We now assume
that r(t) is a Markov process. In the definition of 13(t)e, it follows from the Markov prop-
erty that the condition that no crossing occurred before time t is equivalent to the condi-
tion that r(t) is less than the threshold at time t. Thus if P[ I signifies the probability
of the event in the brackets,

0(t)E= P[r(t + e) > AJr(t) < A]

= P[r(t) + r'(t)e > A > r(t)] (5)
P[r(t) < A]

where Eq. (4) has been used in the last step. We define frr'(X, Y) to be the joint probabil-
ity density of r(t) and r'(t). The probability density of r(t) is represented by fr(x). In gen-
eral the densities will be functions of time. In terms of the density functions, Eqs. (5)
can be rewritten as

JO A

f0 = A frr'(X, y) dxdy
0 A-ye

,(te A A6L fr(x) dx

4
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where the region of integration in the numerator can be determined by inspection of the
rr' plane. The time dependence of the density functions is implicit. In the limit of small
e, the inner integral of Eq. (6) can be evaluated. Taking the limit of Eq. (6), we obtain

yf ((A7 y) dy

A (7)f fr(x) dx

The substitution of Eq. (7) into Eq. (3) gives a complete solution to our problem. How-
ever, the result will seldom be a simple closed-form expression, since the density functions
of Eq. (7) are time dependent, making the evaluation of the integral in Eq. (3) difficult
in most cases.

We could have attempted to derive f(t) from the Fokker-Planck equation for con-
tinuous Markov processes and first passage time theory. However, the present approach is
easier and yields greater physical insight.

STATIONARY NOISE

In most applications the noise can be considered stationary over the observation inter-
val. In this case the general results can be simplified somewhat. Consider the received
pulse shown in Fig. 6. Time is divided into four periods. Region I is defined by 0 t
< to, the time before the occurrence of the leading edge. Region II is defined as the inter-
val of the leading edge, to < t < t. Region III is the interval between the leading and
trailing edges, t < t < t2. Region IV is the remaining time period. These definitions are
not precise but are often useful when the pulse has a reasonably fast rise.

In Region I, r(t) has no signal component, by definition. Since the noise is station-
ary, neither frr'(A, y) nor fr(x) has a time dependence. Thus

:(t) = C0, 0<t<to, (8)

and

fc(t) = cot 0 < t < to (9)

where C0 is a constant. Using Eq. (8) in Eq. (3), it follows that for Region II

fc(t) = e ° :(t) exp f :(t) dtj, to < t < t . (10)

In Region III the signal component of r(t) is approximately constant, by definition. Once
again the stationarity of the noise leaves no time dependence in (t). It is then easy to
see that f(t) has the form given by

fc(t) = Cle-C2t, t1 < t < t2 1

5
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DON J. TORRIERI

0 to ti t2
TIME

Fig. 6-Time regions of a pulse

where C1 and C2 are constants. In most applications the value of f(t) is negligibly small
in Region IV.

The general features of the variation of f (t) are seen in the previous expressions. We
will now consider some important special cases.

STATIONARY, ADDITIVE NOISE

If the noise is additive, we can write r(t)-= s(t) + n(t), where s(t) is the signal and
n(t) is the noise. In the presence of additive noise, Eq. (7) becomes

O(t) =

00

f t) [y + s'(t)] fnn'(A - s(t), y) dy

A-s( t)
if fn (x) dx

_00

(12)

where s'(t) is the time derivative of s(t), fn,'(x, y) is the joint probability density of the
noise and its derivative, and fn(x) is the probability density of the noise. Note that, in
contrast to Eq. (7), the time dependence is exhibited explicitly in Eq. (12). Because the
noise is stationary, there is no implicit time variation in fnn(X, A) or fn(x).

Equation (12) can easily be evaluated in two special cases. In the first one, it is as-
sumed that P[n'(t) < - s'(t)] is negligible for all s(t) and n(t) in Region II. Formally, we
can write

y <-s'(t), to < t < t1 . (13)

It is further assumed that n' is symmetrically distributed about the origin, that is,

fn,'(x, Y) = fn'(x, -Y)-

6

fn"(X' Y) ;:ze 0,

(14)
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Under these two assumptions, Eq. (12) is approximately given by

3(t) = s'(t)fn(A - s(t) ) (15)
A -s (t)

-C f,(x) dx

Looking at the right side of Eq. (15), we notice that we can write

d LA (t) (16)
d t

Using the Eq. (16), (3(t) can be readily integrated. Performing the integration, noting that
s(to) = 0 by definition, and substituting into Eq. (10) yields

e-Coto
f(t) = s(t)f,(A - s1(t)to t < t, (17)

f n (x) dx

where the factor in brackets is a constant. Equations (9), (11), and (17) constitute a
closed-form solution for the probability density in this special case.

For the second special case, we assume s'(t) is a constant M (not necessarily large)
in Region II. We further assume that n(t) and n'(t) are statistically independent. The
latter assumption can be stated formally as

f"n'(x, Y) = f(X)f"'(Y) (18)

Under these two assumptions, if M 0, Eq. (12) reduces to

3(t) = K Mfn(A -s(t)) (19)fA-s(t)
s fn(x) dx
_00

where K is a constant defined by

K /= ~' ( + g)fn,(y) dY M /0. (20)

Clearly, Eq. (19) can be put in the form of Eq. (16). It then follows from Eq. (10) that

s( t)K-1 KMe-Coto
fc(t)= ffl(A -s()) r fn(x)dx] F A K to t1 '

(21)

7
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where the last factor in brackets is a constant. Equations (9), (11), and (21) constitute a
closed-form solution for the probability density in this special case.

It is noticed that in the limit of large M, Eq. (20) indicates that K 1. Then it is
seen that Eq. (21) reduces to Eq. (17).

It can easily be shown (1) that additive Gaussian noise fulfills the conditions specified
by Eq. (14) and (18). Thus if Eq. (13) is satisfied, we can use Eq. (17) for the Gaussian-
noise problem. Alternatively, if M is constant, we can use Eq. (21) for the Gaussian-noise
problem. A stationary Gaussian Markov process must have a power spectrum of the
form (7)

a
S(co) = ______

where a and b are constants. A flat noise spectrum may be closely approximated over any
finite frequency range by a suitable choice of values for the two constants. Of course,
stationary white Gaussian noise, which is flat over the infinite frequency range, is neither
differentiable nor Markov.

In many practical situations the received pulse has a very short rise time. Rather
than use the formulas already established, we seek a direct derivation of the formulas for
this special condition.

DIRECT DERIVATION FOR LARGE-SLOPE LEADING EDGES

If the leading edge of the received pulse has a large slope, it is intuitively reasonable
to expect that there is only a small probability of more than one threshold crossing in
Region II of Fig. 6. Formally, if fr'(Y) is the probability density of the slope of r(t), we
assume that

fr'(Y) 0, Y < 0, to < t < t. (22)

In other words, the signal slope is sufficiently great for the combined signal and noise to
have negligible probability of nonpositive slope. To simplify matters further, we set to =
0, that is, we eliminate Region I.

Let Fr(x, t) be the probability that r(t) 6 x. Thus Fr(x, t) is a time-varying probabil-
ity distribution function. Since there can be only one crossing between 0 t t, the
probability that no crossing occurs before time t is equal to Fr(A, t), for if r(t) < A,
then no crossing could have occurred before time t. Let F,(t) represent the probability
distribution function of the first crossing, that is, F,(t) is equal to the probability that a
crossing occurred before time t. From this definition and the preceding statements,

1 - F(t) = Fr(A, t), 0 < t< t1. (23)

Differentiation of a distribution function gives a density function. Thus at all points where
a derivative is defined, we have the following probability density function for a threshold
crossing:

8
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d Ft (A, t) 0 < t < t. (24)

We may ignore the possibility of a first crossing for t > t if

ti
1 - fc(t) dt << 1. (25)

In deriving Eq. (24), we have not invoked the Markov property. Thus Eq. (24) is
valid for processes with short rise times and differentiable distribution functions. We now
turn to examples of the applications of this equation.

APPLICATIONS

As a first example of the application of Eq. (24), consider additive Gaussian noise.
Then Fr(A, t) = Fn(A - s(t)), and it follows that

fc(t) = s(t)f,(A - s(t)), 0 t t. (26)

Except for a multiplicative constant, Eq. (26) is identical to Eq. (17), which was derived in a
more rigorous manner.

Zero-mean additive Gaussian noise has a probability density specified by

fn(x) exp (27)

Suppose that the leading edge of a received pulse can be approximated by

s(t) = Mt, 0 < t < t, (28)

where M is a large constant. Then Eqs. (26) through (28) yield

M (A -Mt) 2 I
fc(t) = _ exp - 202 O t t. (29)

We now assume that the threshold is at the half-amplitude level, that is, A = Mt1 /2. Under
this assumption, Eq. (25) gives the condition

(A)
2 erfc -) << 1, (30)

where we define

1 t2)
erfc (x) - expl----dt. (31)

N/21T Jx L

9
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Equation (30) gives the condition under which we may ignore the region t > t.

We can easily calculate the expected value of t, the random variable specifying the
pulse position. We have, if Eq. (25) is valid and A = Mt,/2,

2A/M
E[t1I f tfc(t) dt. (32)

0

Using Eq. (29) in Eq. (32), we obtain

A 
E[t] M 2e _ f(a)j] (33)

Thus the arrival-time estimation by adaptive thresholding at the half-amplitude level is
biased. However, Eq. (30) indicates that the amount of bias is small and that this bias de-
creases rapidly as signal amplitude increases.

A measure of the fluctuation in pulse position is provided by the standard deviation
of the arrival time, which is defined to be

s = /E[t2] - {E[t']} 2 (34)

When Eq. (25) is satisfied, we can write

2A/M
E[t2 = A t2 fc(t) dt. (35)

0

From Eqs. (29) and (33) through (35), it follows that for additive Gaussian noise,

(M) 2 erfc) erfc )]

+ (_)2[1 - 2 erfc (A) - V/2 (A exp ()] (36)

Additive Gaussian noise appears in the models for coherent amplitude-modulation
(AM) systems. However, noncoherent AM systems usually contain envelope detectors. At
the output of the detector, r(t) is described by a Rice distribution. It can be shown that the
probability distribution function is (8)

/s 2(t) NA/0 lx~) x2\
Fr(A, t) = exp (-2 ) f xIOt) exp _ 2)dx, (37)

where I 0 (x) is the zero-order Bessel function of imaginary type. From Eqs. (24) and (28),

10



M (M2 t2 )fA/Os e x2\f a(t) - exp l
FMt /xMt\ - xMtjfl

X LIo- ( - xI, )jJt dx. (38)

where 11(x) is the first-order Bessel function. The substitution of Eq. (38) into Eqs. (32)
and (35) results in integrals which cannot be evaluated analytically. However, with the
aid of a digital computer, it is possible to numerically compute the value of t, the nor-
malized expected arrival time, defined by

E[tJI M
tn = t = 2A E[tj]. (39)

ti 2A

It is also possible to determine the function g(A/a), which is defined by

s M (a) (40)

The results of the numerical computations are summarized in Table 1. The first column
is the signal-to-noise ratio (S/N) as defined in the usual AM system. Thus

E2 2A2
S/N = 10 log 1 0 - = 10 log10 * (41)

2a2 q2

The fifth column is calculated from Eqs. (36) and (40). It is noticed that the standard
deviation for the Gaussian distribution (coherent AM system) is uniformly less than the
standard deviation for the Rice distribution (noncoherent AM system). For a fixed value
of S/N, the degradation in standard deviation for the Rice distribution is defined to be
the additional power required to achieve the standard deviation that exists in the Gaussian
case for the specified S/N. The sixth column lists the degradation in decibels as a function

Table 1
Signal-to-Noise Dependency of Various Quantities

SIN tn ~~~~g(A/la) g(A/o) Approximate

(dB) A/a (Rice) (Rice) (Gauss) Dbr)aion

12 2.815 0.462 1.048 0.997 0.44

14 3.544 0.478 1.028 1.000 0.24

16 4.462 0.487 1.015 1.000 0.13

18 5.617 0.492 1.009 1.000 0.08

20 7.071 0.495 1.005 1.000 0.05

11NRL REPORT 7619
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of S/N. For S/N < 12 dB, it is found that Eq. (25) is not well satisfied for either the
Rice or the Gaussian distribution; hence, these values of S/N have not been listed.

Examination of the third column in Table 1 shows that the estimation procedure is
biased. However, the bias steadily decreases as S/N increases.

ASYMPTOTIC RESULTS

We conclude with a heuristic discussion of the asymptotic properties of arrival-time
estimation by adaptive thresholding. It has been seen in the last section that the esti-
mation procedure is biased. Of course, some of the apparent bias is due to our having
assumed a negligible probability of a first threshold crossing for t > t. Some bias is also
due to setting the threshold at the half-amplitude level. For both the Rice and Gaussian
distributions, the arrival-time estimate approaches the unbiased value of one-half the rise
time, in the limit of large S/N. Thus we can say that the estimate is asymptotically un-
biased.

For the unbiased estimate of arrival time of a low-pass pulse with large S/N in white
Gaussian noise, the Cramer-Rao bound requires (6) that

S2 > |- f [s'(t)] 2 dt} (42)

where N is the noise power spectral density. If s'(t) = M is a constant and t = 2A/M,
Eq. (42) reduces to

2 > N a2

where we have assumed that the rise time is approximately equal to the inverse of the
system noise bandwidth B. Thus we have set

N- t NB = a2, (44)
tl

where a2 is the mean noise power. A comparison of the fifth column of Table 1 and
Eq. (40) with Eq. (43) indicates that the adaptive-thresholding estimate approaches the
minimum variance expressed by the Cramer-Rao bound. Thus adaptive thresholding is
asymptotically efficient for white Gaussian noise if Eq. (44) is valid. Clearly the perform-
ance of a noncoherent system is bounded by the performance of the corresponding co-
herent system. Thus from a comparison of the fourth and fifth columns of Table 1, it
appears that adaptive thresholding is also asymptotically efficient for the Rician process.

12
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